Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(1): e0296551, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38165869

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0258679.].

2.
iScience ; 26(8): 107276, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37559905

RESUMO

Globally, human activities impose threats to nature and the provision of ecosystem services, such as pollination. In this context, ecological restoration provides opportunities to create managed landscapes that maximize biodiversity conservation and sustainable agriculture, e.g., via provision of pollination services. Managing pollination services and restoration opportunities requires the engagement of distinct stakeholders embedded in diverse social institutions. Nevertheless, frameworks toward sustainable agriculture often overlook how stakeholders interact and access power in social arenas. We present a perspective integrating pollination services, ecological restoration, and public engagement for biodiversity conservation and agricultural production. We highlight the importance of a comprehensive assessment of pollination services, restoration opportunities identification, and a public engagement strategy anchored in institutional analysis of the social arenas involved in restoration efforts. Our perspective can therefore guide the implementation of practices from local to country scales to enhance biodiversity conservation and sustainable agriculture.

3.
PLoS One ; 16(10): e0258679, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34695146

RESUMO

Plant stomata are essential structures (pores) that control the exchange of gases between plant leaves and the atmosphere, and also they influence plant adaptation to climate through photosynthesis and transpiration stream. Many works in literature aim for a better understanding of these structures and their role in the evolution process and the behavior of plants. Although stomata studies in dicots species have advanced considerably in the past years, even there is not much knowledge about the stomata of cereal grasses. Due to the high morphological variation of stomata traits intra- and inter-species, detecting and classifying stomata automatically becomes challenging. For this reason, in this work, we propose a new system for automatic stomata classification and detection in microscope images for maize cultivars based on transfer learning strategy of different deep convolution neural netwoks (DCNN). Our performed experiments show that our system achieves an approximated accuracy of 97.1% in identifying stomata regions using classifiers based on deep learning features, which figures out as a nearly perfect classification system. As the stomata are responsible for several plant functionalities, this work represents an important advance for maize research, providing an accurate system in replacing the current manual task of categorizing these pores on microscope images. Furthermore, this system can also be a reference for studies using images from different cereal grasses.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microscopia/métodos , Fotossíntese , Fenômenos Fisiológicos Vegetais , Estômatos de Plantas/classificação , Transpiração Vegetal , Zea mays/fisiologia , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Estômatos de Plantas/anatomia & histologia , Estômatos de Plantas/fisiologia , Zea mays/anatomia & histologia
4.
Environ Sci Technol ; 55(17): 12043-12053, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34423633

RESUMO

Crop pollination is one of Nature's Contributions to People (NCP) that reconciles biodiversity conservation and agricultural production. NCP benefits vary across space, including among distinct political-administrative levels within nations. Moreover, initiatives to restore ecosystems may enhance NCP provision, such as crop pollination delivered by native pollinators. We mapped crop pollination demand (PD), diversity of pollinator-dependent crops, and vegetation deficit (VD) (vis-a-vis Brazilian legal requirements) across all 5570 municipalities in Brazil. Pollinator-dependent crops represented ∼55% of the annual monetary value of agricultural production and ∼15% of the annual crop production. Municipalities with greater crop PD (i.e., higher degree of pollinator dependence of crop production) also had greater VD, associated with large properties and monocultures. In contrast, municipalities with a greater diversity of pollinator-dependent crops and predominantly small properties presented a smaller VD. Our results support that ecological restoration prompted by legal requirements offers great potential to promote crop productivity in larger properties. Moreover, conservation of vegetation remnants could support food security in small properties. We provided the first steps to identify spatial patterns linking biodiversity conservation and pollination service. Using Brazilian legal requirements as an example, we show that land-use management policies may be successfully used to ensure agricultural sustainability and crop production.


Assuntos
Ecossistema , Polinização , Agricultura , Abelhas , Biodiversidade , Brasil , Produtos Agrícolas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...